The technology, known as Tissue Nanotransfection (TNT), injects genetic code into skin cells, turning those skin cells into other types of cells for treating diseased conditions, repairing organs, blood vessels and nerve cells
Brought to you
August 13, 2017 874 14
1 2 3 4 5 6

Researchers at the Ohio State University Wexner Medical Center and Ohio State’s College of Engineering have developed a new technology, Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

“By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Results of the regenerative medicine study published today in the journal Nature Nanotechnology

Chandan Sen, PhD, holds a chip that could revolutionize medical care  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

In laboratory tests on mice at The Ohio State University Wexner Medical Center, the chip was able to heal serious wounds with a single touch by converting skin cells into vascular cells.

Researchers studied mice and pigs in these experiments. In the study, researchers were able to reprogram skin cells to become vascular cells in badly injured legs that lacked blood flow. Within one week, active blood vessels appeared in the injured leg, and by the second week, the leg was saved. In lab tests, this technology was also shown to reprogram skin cells in the live body into nerve cells that were injected into brain-injured mice to help them recover from stroke.

Results of a breakthrough discovery called tissue nanotransfection  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

In laboratory tests at The Ohio State University Wexner Medical Center, researchers were able to heal the badly injured legs of mice in just three weeks, with no other treatments, simply by touching the legs once with a high-tech silicon chip.

“This is difficult to imagine, but it is achievable, successfully working about 98 percent of the time. With this technology, we can convert skin cells into elements of any organ with just one touch. This process only takes less than a second and is non-invasive, and then you're off. The chip does not stay with you, and the reprogramming of the cell starts. Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary,” said Sen, who also is executive director of Ohio State’s Comprehensive Wound Center.

TNT technology has two major components: First is a nanotechnology-based chip designed to deliver cargo to adult cells in the live body. Second is the design of specific biological cargo for cell conversion. This cargo, when delivered using the chip, converts an adult cell from one type to another, said first author Daniel Gallego-Perez, an assistant professor of biomedical engineering and general surgery who also was a postdoctoral researcher in both Sen’s and Lee’s laboratories.

TNT doesn’t require any laboratory-based procedures and may be implemented at the point of care. The procedure is also non-invasive. The cargo is delivered by zapping the device with a small electrical charge that’s barely felt by the patient.

Chandan Sen, PhD, left, looks at study data with Daniel Gallego-Perez  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

The pair developed a groundbreaking technology that healed serious injuries in laboratory tests with just a single touch.

“The concept is very simple,” Lee said. “As a matter of fact, we were even surprised how it worked so well. In my lab, we have ongoing research trying to understand the mechanism and do even better. So, this is the beginning, more to come.”

Researchers demonstrate a process known as tissue nanotransfection  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

In laboratory tests, this process was able to heal the badly injured legs of mice in just three weeks with a single touch of this chip. The technology works by converting normal skin cells into vascular cells, which helped heal the wounds.

Daniel Gallego-Perez, PhD, center, demonstrates a breakthrough technology  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

He called the tissue nanotransfection, the process uses a silicon chip to convert skin cells into other types of cells. Researchers restored brain function to mice after strokes and rescued badly injured legs on mice in just three weeks with a single touch of this device.

James Lee, PhD, left, examines a silicon chip with Junfeng Shi  /  image by Ohio State University Wexner Medical Center  /  source Ohio State University Wexner Medical Center

Lee, who led a team of engineers who designed the chip, collaborated with Ohio State Wexner Medical Center on this study to reprogram skin cells to become other types of cells.

Researchers plan to start clinical trials next year to test this technology in humans, Sen said.

Funding for this research was provided by Ohio State’s Center for Regenerative Medicine and Cell-Based Therapies, Ohio State’s Nanoscale Science and Engineering Center and Leslie and Abigail Wexner.

Source and references

  1. News.osu.edu by Eileen Scahill - Ohio State researchers develop regenerative medicine breakthrough
  2. Ohio State University Wexner Medical Center - Breakthrough Device Heals Organs with a Single Touch
  3. Nature.com - Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue
  4. WexnerMedical.osu.edu - Ohio State University Wexner Medical Center
  5. Engineering.osu.edu - Ohio State College of Engineering
  6. YouTube.com by OSU Wexner Medical Center - Breakthrough Device Heals Organs with a Single Touch

Image references

Related search tags

Last updated 1 year ago on November 15, 2017 at 5:15 PM PST

Did you know? Anyone can join!

Signup today and start writing your own posts.

No, Seriously. You can win cash!

We send out cash prizes, also check out our get paid per view.

Comments

Reactions

The reactions feature is coming soon
This will help to determine which posts are more truthful, exciting and more interesting than others and will show what do most readers think about it.

Related posts


Featured spotlight





Most popular





Recently posted